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Solution of the Mean Spherical Approximation for 
Hard Ions and Dipoles of Arbitrary Size 
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The general solution of the mean spherical approximation (MSA) for an 
arbitrary mixture of hard spherical ions and dipoles, in which the ions 
can be of different size, is found. This solution is given in terms of three 
parameters that are calculated by solving an algebraic equation. Two of 
these parameters are scaling parameters required to satisfy the general 
symmetry of the pair correlation functions, and are similar to the one 
introduced in the solution of the MSA for an ionic mixture in earlier work. 
For equal size and low ionic concentration, we get a rather explicit solution 
of the MSA, which is formally similar to the Waisman-Lebowitz solution 
of the restricted primitive model, but with a concentration-dependent 
dielectric constant. 

KEY WORDS: Mean spherical approximation; electrolytes; nonprimitive 
electrolytes. 

1. I N T R O D U C T I O N  

One of  the impor t an t  aspects  of  the theory  of  e lectrolyt ic  solut ions  is the 
p rope r  under s t and ing  o f  the so lva t ion  effects. By this we unde r s t and  the 
difference in the behav ior  and  s t ructure  of  a real ionic so lu t ion  in which the 
ions and the solvent  are real molecules  and  the so-called pr imi t ive  m o d e l  
in which the solvent  is cons idered  as a con t inuum tha t  pervades  the entire 
system. Aqueous  solut ions  are  cer ta in ly  the most  interest ing systems, but  
here, and  in spite o f  the very impressive progress  in our  unde r s t and ing  o f  
l iquid water,  our  knowledge  o f  the s tructure and  in teract ions  of  the mole-  
cules and  the fluid is far  f rom complete .  Moreover ,  even if  we knew the 
deta i led s t ructure  and  in terac t ions  of  water,  it would  be a real  t a sk  to s tudy 
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the statistical mechanics of simple ions with it. Therefore a model that is 
more realistic than the primitive model, such as the mixture of hard ions 
and dipoles, could yield helpful information. 

For the primitive model it has been shown that the mean spherical 
approximation (MSA) of Lebowitz, Percus, and Yevick (1,2~ is not only a 
tractable approximation, but also leads to quite good agreement with com- 
puter experiments. The final analytical solution of the restricted (equal-size) 
case was obtained by Waisman and Lebowitz (3~ and yielded excellent agree- 
ment with the more elaborate calculations using the hypernetted chain 
approximation ( t tNC) and the machine calculations using the Monte Carlo 
technique. In his rather beautiful work, Wertheim (4~ showed that the MSA 
had also an analytical solution for a system of hard dipoles. 

We do not expect the MSA to be numerically very accurate in this case, 
at least in the interesting case of high dielectric constant (dipole moment). 
It should be quite reasonable for the weak coupling limit, in which the 
dielectric constant is low (20). 

At any rate, the results of the MSA can be improved systematically 
either using the graphical expansions of Andersen and Chandler c5~ or the 
GMSA of Waisman (6~ and Hoye e t  al. (7~ Final word on the accuracy of any 
of these approximation schemes can be obtained only by comparison with 
machine computations, which are presently unavailable. 

The case of a mixture of equal-size ions and hard spheres was solved 
some time ago by the present author (8~ and independently by Adelman 
and Deutch. (9~ The results of these works do not seem to be in complete 
agreement for all concentrations of the electrolyte, but they are for low 
concentrations. In the present work we want to give the solution of the 
MSA for the case in which we have an arbitrary mixture of hard ions and 
one species of solvent, represented by hard ions. We recall that in the case 
of the primitive model, the solution of the MSA was given in terms of a 
single scaling parameter 2F. (1~ This scaling length has the same physical 
interpretation as the Debye shielding length, and considering the asymptotic 
form of the pair correlation function for low ionic concentrations, we can 
also conclude that indeed 2F is the shielding length for the system. In the 
present work, the symmetrization condition requires two, rather than one, 
scaling parameters. A simplistic interpretation of this is provided by the 
idea that now we will need two different types of screening, one of ions by 
ions and another of ions by dipoles. The solution consists in showing that 
all the properties of the system can be expressed as functions of the two 
scaling parameters and the dipole-dipole excess energy parameter, and that 
these quantities can be found by solving a system of algebraic equations. 
For the case in which all the ions are of equal size (but the solvent can be 
of different size) we get a set of three equations that can be shown to be 
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identical with those of Ref. 8. Furthermore, the solution given in that 
paper is pushed a little further and an explicit expression for the excess 
energy parameter of the ion-ion interaction is found. The result shows that 
the thermodynamic properties are given by the same formulas of the restricted 
primitive model, but with a concentration-dependent dielectric constant, 
for sufficiently low ionic concentration. A very brief discussion of the 
thermodynamic properties is given in the last section. 

2. M E T H O D  OF S O L U T I O N  

The method of solution derives from our earlier work on the equal-size 
mixture of ions and dipoles and on the mixture of unequal size ions. <8'1~ 
The notation will be similar to that employed in these works. Our system 
is composed of a mixture of n - 1 components of diameter ~i, electrovalence 
z~, and number density pi (1 ~< i ~< n - 1). The role of the solvent is played 
by an assembly of hard spheres of diameter ~,, number density 9~, and 
dipole moment ~1. Since the ions are spherical, the pair correlation function 
g~j(r~j) depends only on the center-to-center distance 

rij = Ir, - rjl (I) 

where r~ is the position of ion i. For the correlations involving the dipoles, 
we need to know also the relative orientations. A convenient way of describ- 
ing these correlations is the invariant expansion formalism described in 
earlier work (11,12> 

g,j (r~;)O (S2~, r~j, k ,3  (2) g,j(x,, x;) = ~ -m,, "m., 
rrl)n~l 

where X~ = ~ ,  Ri and ~2~ = ~ ,  /3~, y~ are the three Euler angles that give 
the orientation of the molecule i. The orientation of the intermolecular, 
center-to-center vector R~y is given by/~< = 0~, q~. The coefficients ~ depend 
only on the center-to-center distance r~#, while the angular dependence of 
the correlations is given by the invariant products 

+.. = , , ,m+l> , , .+ ,> , , , . :  (m . 
/ t '~ '~ '  /JZ V / P 

(3) 

where we have used the customary notation for the Wigner 3-j symbols, 
and generalized spherical harmonics ~,,,~__~,r)"~ (o.~3> (we will use the notation 
and conventions of Edmonds ~3> throughout). 

The coefficients in the expansion (2) are not dependent on the choice 
of any particular reference frame. A rather convenient expansion, which 
we call the irreducible representation (IRREP), is obtained by taking a 
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reference frame with the z axis along the R~j vector. Then, after a slight 
rearrangement, we obtain 

g,j(X,, Xj) = ~ g,3.~(R,j)qb~"(~, ~2~) (4) 
m , n , x  

with 

and 

gii.x = - X 

1~11/2Dm [~  ~D . IK~ O ~ " =  [(2m + 1)(2n + jj ox~ ~J o.-x~ J'J (6) 

With this expansion, the Ornstein.-Zernike equation becomes a set of 
matrix equations, each for a value of X. If  the order of the highest multipole 
in a particular expansion is n, there will be 2n + 1 matrix equations for 
IX] ~< n. We should remark that the IRREP expansion (4) is very similar 
to the helicity expansion used in high-energy nuclear physics. Let us put 
this in a more explicit form: Consider the IRREP expansion for the indirect 
correlation function h~j = g,j - 1, and also for the direct correlation function 
c,s. ~14) To avoid unnecessary repetitions, let us designate either h,j or % 
by the generic notation f s :  The Fourier Bessel transform of the IRREP 
coefficient is related to the invariant coefficient of (2) by 

(: fo F.m~rk~,J.x~ J = (_)x4, r ~ _nx (i) z dr r2jz(kr)f~Z(r) (7) 

where jr is the standard notation for the spherical Bessel function of 
order l. A convenient integral representation of this function is ~15) 

fo " ( )~e -'~Tt] j,(kr) = (1/2P) dt P~(t)[e ~krt + - (8) 

where P~(t) is the Legendre polynomial of order l. Using now the symmetry 

f~" '  = (-)~r (9) 

we can write (7) in compact matrix form 

f0 Fx(k ) = dr [e~kro~x(r) + e-~er~r(r)] ,  Fx(k ) = Fxr(-k) (10) 

where o ~'T is the transpose cf  the matrix ~ By direct substitution we find 
that the matrix elements of (10) are given by 

'~m~(r) = (--)X2~r ~ --xn dr1 rlP,(r/rOf~(rO (11) 
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The inverse transformation from ~T,~ to fm"Z(r) is given in Appendix A. 
We should also notice that there is a direct relation to the expansions given 
by Wertheim in his original work on dipoles. (~) Let us designate by Jz the 
transform of h' and by S x the transform of d. In other words 

JiJm"z(r) = (-)x2rr ~ -xn dr1 rlP,(r/rl)h~(rl) (12) 

and 

Si";,"x(r) = (-)x2~" ~ -xn dr1 qP,(r/rl)O~Z(rl) (13) 

Using now (10), (12), and (13), we get the matrix OZ equation in Fourier 
space and in the irreducible representation 

[I + p1/2~z(k)p1/2][I - p1/2Cx(k)pl/2] = I (14) 

To define the mathematical problem, we need now to give the closure 
of the OZ equation, that is, a relation between Cz(r ) and Hz(r ) outside the 
hard core. The simplest closure is the MSA, (1-4) in which the direct cor- 
relation function outside the hard core is proportional to the interaction 
potential. In terms of the invariant coefficients (2) we have 

O~nZ(r) = - f lu~l(r) ,  r > a~j (15) 

with 

~ j  = �89 + ~j) (16) 

fl = 1/kTis the usual Boltzmann thermal factor. For electrostatic multipolar 
interaction, the pair potential can be expanded as 

u,j.(X,, X~) = ~ umn'(r~.O~mnl(~jR,j) (17) 
toni  

with coefficients (16) 

8 ml (2l + 1)I ]1/2 /Zm/Z'~ umnl(r) = 
"~+" ( - )  (2m + 1)! (2n + 1)!J r '+1 

where >m is the (linear in our case) multipole moment of order m. The MSA 
is mathematically simple, because it decouples the IRREPS. But this means 
that the cluster graphs corresponding to this approximation will be missing 
part of the contributions of the dipole-dipole interaction to the center-to- 
center correlation function. 

Combining (13) and (15) with the relation 

if[ dr1 rlPz ~ = ~ dx P~(x)x '-2 = 0 for l >/ 2 (18) 
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we have that for the dipole-dipole correlation function the boundary 
condition is (~ 

S~ ~ = 0, r >/ crh (19) 

where we recall that the index n corresponds to the solvent. For the ion-  
dipole interaction the integral for the boundary condition (13) yields 

f ]  dx Pl(x) /x  = 1 

Furthermore, we see from the 3-j symbols of (13) that only X = 0 will 
have ion-dipole matrix elements. Physically, this is due to the cylindrical 
symmetry of the ion-dipole interaction. Then 

S~ = zi~l, r >1 a~ (20) 

where 

c~ = (4rr/~3)/3e/~ ~ (21) 

(The elementary charge is e throughout.) 
Finally, it is clear that for the ion-ion interaction (l = 0) the integral 

(18) of  Eq. (13) will diverge. For this reason, we will have to introduce a 
convergence factor e-Ur~ that we cancel out at the end of the calculation. 

Hence 

and 

with 

fT ~ dr1 rle-"rl/rl = e-"q/t~ (22) 

S~176 = tXoZZ~zje-Uq/tx , r >i cqj (23) 

%2 = 41r/3e 2 (24) 

Let us now rewrite the OZ equation with a new direct correlation 
function (3~ in which the long-range interactions have been subtracted: 
That  is, if 

d~ ' ( r )  = d~l(~ -- flu~n'(r) (25) 

where d~ ~'(~ is the short-ranged direct correlation function that is zero for 
r /> eij. Calling Co~ the Fourier transform of this function [defined 
according to (11)], we get the OZ equation for X = 0 

[I + t~l'22~o(k)~l/2]{I- tal/2[Co~ - Do(k)]t0 ~/2} = I (26) 
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The structure of the matrices H0 and Co is similar: Explicitly, the Co 
matrix for the X = 0 IRREP is 

( c ,o cot co \ 
c~ co o 

where Cg9 is the coefficient for the ion-ion correlation, C~ ~ is the spherically 
symmetric ion-core-dipole-core correlation, while C~ is the angle-dependent 
electrostatic contribution to this interaction. In the MSA, both of these 
correlations are decoupled, but in the general case, one would expect them 
to depend on each other. Similarly, for the dipoles, the element C~ ~ corre- 
sponds to the hard-core interaction of  the solvent molecules, while C ~  
corresponds to the purely electrostatic interaction. The matrix Do(k) is also 
an n + 1 square matrix, since we have to include the charge z, = 0 for 
the solvent molecules. (Incidentally, the case of molecules with dipolar 
moments and charges is rather interesting for the theory of protein solutions.) 
We have 

+ o - 

Do(k) = 0 0 (27) 

\ zs[eql(~ + ik)] 0 0 

The helicity +X = 1 0 Z  equation for the ion-dipole mixture turns 
out to be the same as for the case of the pure dipole case: 

[1 + p.~ff~(k)][1 - p.Cl(k)] = 1 (28) 

which has only one component for the electrostatic solvent-solvent 
interactions. 

The next step in the solution is the Wiener-Hopf factorization of 
the (18'19) direct correlations. For X = 0 we have 

{ I -  Rli2[C0~ - Do(k)]t ~1'2} = Q ( k ) Q r ( - k )  (29) 

but from the parity and asymptotic behavior of the left-hand side of (29) in 
the complex plane, we know that the matrix elements of  the Baxter factor 
correlation function Q(k) must be of the form 

n""(k~ ~,S~m, -- (PiPs) lm dr i k  . . . . .  

L ' J  A~'t lit 

wherem,  n = 0 ,1 ;  1 ~< i,j~< n ; a n d  

q 
d r  e r(*~ - u)] 

J 

(30) 

(31) 
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To get further constraints on Q(k), let us examine the inverse Fourier 
transform of (29) 

S~'~(r) + D~'(r)cpm~(r) 

= [ - a ~ " ( r )  + A~"]O(r - Aj,) + [ - a ' ~ ( - r )  + A~.~]O(-r  - h,j) 

O0 m n  n n  m n  1 n n  + ~ p~ ~o (r)A,~ ~ A ~  + dr~ Q,~ ( ~ ) Q ~ ( r ~  - ~) 
k n  1 k k~, tcJ 

n n  I m n  I n n  - dr1 Ayk Q,~ (r l)  - dr1 A~"IQje I ( r l )  (32) 
[h~c~, r + ~ t ]  [)xkt ,  '~ki - r] 

where DT~" are the coefficients, and q~m"(r) are the radial dependent parts 
of the matrix elements of the matrix D0(r). In other words, 

D~ ~ = C~o2ZiZj; ~~176 = e-Ulrl/2/L 
D~ = alz , ;  cp~ = e-r"O(r)  (33) 
D~ ~ = alz , ;  ~ l~  = e+r~O(--r)  

In (32) we have also used the notation O(x) for the Heaviside function, 
and the square brackets [x, y] in the limits of the integrals indicate either 
the least upper bound or the largest lower bound. 

If  we multiply (32) by tz and then take the tL -+ 0 limit, we get 

D~9 = ~ pkA,~176 (34) 
k 

But Do is a very singular matrix, and it has only two nonzero eigenvalues. 
It can be shown therefore that the above relation also implies that A is also 
singular, and that 

A~ = z~ak '~, A~ = 0, n = 0, 1 (35) 

(where a~" is defined by this relation) so that, using (27), we get 

c~o 2 = ~ .  pk(akO) 2 + p~(a~l) 2 (36) 

where ao 2 is defined by (24). This equation is the generalization of Eq. (14) 
of Ref. 8b. 

From the continuity of S ~ ( r )  at the boundary r = cr~j we get from (32) 

Q~"(e,s) = 0 (37) 

Also from (32), and for r > a~y, we need 

DO~ A O ~ _ ~  0. 1. = pkA~  z K ~ l  (38) 

where we have used the notation 
f crjt 

Ki~ ~ = dr O ~ ( r )  (39) 
v h i t  
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Because of (35) and using (21) and (27), we see that the boundary 
condition (38) can be rewritten in the more compact form 

= _ p n K ~ )  _ t'Jus- ~ ovzo~, ns (40) 
j<~n- 1 

which again is the generalization for the mixture of the corresponding relation 
for the pure ionic case. Another relation that will be needed is the symmetry 
relation 

Q9.O(,~ ..~ AOO oo , , ,  ;,, - = Q j ,  ( h , j )  - A ~ 1 7 6  ( 4 1 )  

which again is quite similar to the one of the ionic case. This condition 
ensures that C0(k) has the correct symmetry under the transformation 
k - +  - k .  

The functional form of Q(r) is obtained from the Fourier inverse of 

[I + pl/2~o(k)p~/2]Q(k)  = [ Q r ( - k ) ] - ~  (42) 

which is 

Jm~(r~ Q ~ ( r )  A~." + ~ Pk dr1 J~"z(r  ~ - r z ) iQk j  (rO - "*~ , ,  , , = - A k j  ] 

knl 1~ 

(43) 

where we have included in t 3~( r~  the Heaviside function that makes this 
function zero for r > '~u. 

Consider now the form of Ju(r ) for r < %: From (12) and since 

~"~' (44) h u t / )  = 0 ,  m , n , l #  0; r < % 

h~176176 = - 1 ,  r < % (45) 

we get 

= I"g o ,04+ I;o .,o1  

where the constants are explicitly given by 

jpo = 2~ dr rh~176 

/ ~ ) ~ o  ~ 
,o~ = _ j~o  = - ( 2 7  dr f , ~1 6 3  

J ~  = ~(2/15)~'227r dr h~2(r)/r 

I u -2 r r  1 dr "1',o = rh , ,  (r) + (1 
0 

(46) 

(47) 

(48) 

(49) 

dr h~=(r)} (50) 
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It is quite simple to see that (46) and (43) imply that Q(r) must be a 
polynomial of the second degree. Furthermore, because of (37), we see that 
it must be of the form 

Q~"(r)  = Q~"'(r - a,j) + 1 g'~mn"[. Z ~ j  ~,. -- a,j) 2 (51) 

After some rather tedious algebra (see Appendix B) we find the 
following relations for the parameters aj" of (35) : 

a, ~ = - ( 2 / D a ) [ N ,  + (r /2A)a jP , ,  - (p .an2/4D)l l l%lj  ] (52) 

where we have used the following definitions (n is always the label for the 
solvent species, and all the summations are over the ionic species only, 
unless otherwise indicated): 

N , =  ~ [3zj+ (~rl6A)p~az3][~ p ~ z k ( J ~ 1 7 6  �88 (53) 

n--J. 

A = 1 -~Tr  ~ ptaz 3 (54) 
I=1  

r t -1  

e .  = ~ p ~ ( N ~  + z~) (55) 
/r 

v, = (1/A.) ~ [3,k + pka~3(~r/6A)lJ~ ~ (56) 
/c=l 

A,~ = 1 - b2/6 (57) 

b2 3-11 (58) = Pn~n Jnn 
v,-1 

~j = ~ vk[3kj + (~r/2A)pka~2%] (59) 

n - - i  

f2 ~~ = ~ pka~vk(Nkak + Zk) + anti'O~3 (60) 
]r 

with 

and finally 

n-1  
fl~o = k ~  pkz~l~ ~ = A .  ~ .  pkZkv~ (61) 

D = 1 + �88 2 ~ pk(akv~) 2 (62 / 
k = l  

n - 1  
I ~  1 3 I0 2 Dn = (l /D) pk(Nkak + Z~ -- ]-2-p,~a. ft .  vka~) 

n--3. t 
+ ~ p~p~[(N~ + z~)~m- ( g ~  + z , ) ~ ]  ~ (63) 
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Also, 

where 
a.  ~ = [2/(Dn)][�89 ~ + �89176 (64) 

n - 1  

~o = ~ ,  P~z~ 2 (65) 

Yo = (1 + �89 (66) 

From here we get the coefficients of the factor correlation function 
Q(r) (51) for the ion-ion interactions (for clarity we drop the superscripts 
from QOO) 

, ~ (  ~r ) 1 P"~"2W07J (67) 
Q,j = crij + ~ cri% -- "2 Dna~~176 2 D  

and 

Qs = 1 + ~ [2(rs + ~ aJ~ ~jPv (68) 
2A D 

where we introduced 

Pv = ~ pka~2vk and ~ = Zpk(~k)' (69) 
k 

It will be interesting to note that Q~j is directly related to the value of 
the pair correlation function gij(r) at contact, while Q~ is directly related 
to the compressibility. As will be seen below, both P. and Pv are small 
quantities in dilute systems (and are also zero for equal ionic sizes), so that 
in this case the compressibility of the MSA is just that of the PY hard-sphere 
mixture (a well-known result for the MSA). 

The value of QO0(~ji) _ AOO required by the symmetry condition (41) is 

_ Q0O(~j,) + AOO = (rr/A)~,% + ajOM, - p,~(r,~2v,(r,%/2D (70) 

where we have used 

M, = N,a, + z, - (p,~,:r,~2/4D)s176 (71) 

As has been the case in our earlier work in the case of ionic mixtures, c1~ 
we do not have enough equations to close the problem, since there is a set 
of 2n + 1 unknown parameters for only three boundary conditions, (36), 
(40) and (79), given below. This has to do with the nonuniqueness of the 
Wiener-Hopf factorization (29) for matrices. For any arbitrary n, the exact 
number of additional equations required by the symmetry of the direct 
correlation function is satisfied only if the following scaling relations are 
true: 

aj ~ = 2 I ' o M / D n  - F~vs%pn(r,~2/2D (72) 

% = rzMj (73) 
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The above relations are a conjecture at this point, and we have no 
rigorous proof  of their validity, other than the fact that they lead to the 
correct results for the equal-size case, which was obtained without this 
assumption. <8~ For the pure ionic case we know that this procedure leads to 
correct and consistent results, as we have shown very recently: 

M j  = (1/AjM){zj -- %2(~r/ZA)[PM + P~PI%p.cr .2Dn/4D]} (74) 

vj = (1/AjM){F~zj -- %(rc/2A)[PMF~% + (1 + F0%.)P~] } (75) 

with 

Aj  M = 1 + Po% -- (Fl%)2P,~cr,2Dn/4D (76) 

n - - 1  

PM = ~ pkakMk (77) 

These relations, together with (52) 

aj ~ = - ( 2 / D n ) [ N j  + (~r/2A)%Pn -- p,~(r,2f21%Tj/4D] 

and (64) 

a,  ~ = [2/(Dn)](�89 ~ + �89176 

are the closure of the mathematical problem of the solution of the MSA for 
the general mixture of ions and one kind of hard dipole: We have to find the 
interaction parameters aj,  N j ,  and vj as functions of only three scaling- 
interaction parameters Po, F~, b2. The situation becomes quite similar to 
that of the solution of the general ionic mixture, where we had to introduce 
a scaling parameter Fo. <zl~ In that case, too, the scaling parameter had a 
direct physical meaning: It was the inverse shielding length for the ionic 
correlations. In the present case, we do have two Debye-like shielding lengths, 
corresponding to the ion-ion correlation (Fo) and to the dipole-ion cor- 
relations (U~). The parameter b2 is just the excess energy parameter of the 
dipole-dipole interaction. 

The complete solution of the mathematical problem is achieved by 
solving a set of three algebraic equations for the three parameters Fo, F1, 
and b2 to the three coupling parameters defined by (21), (24), and the 
coupling parameter for the dipole-dipole interaction <4~ 

%2 = 4~./3e 2, c~22 = (4,r/3)/3(/~') 2, cq = ~o~2 (78) 

Two of these equations are already given by (36) and (40). The third 
of these equations is obtained from the analysis of (32) and the boundary 
condition (15). The analysis follows the lines of Wertheim's solution (4~ for 
the pure dipole case, and the reader is referred to this work for a detailed 
discussion (see also Refs. 8 and 9). The result turns out to be the logical 
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generalization of the corresponding condition (16) of Ref. 8 for the all- 
equal-size case: 

y l  2 + pnr = (1 - pnK~ 2 -1- On ~ P~[K%] 2 (79) 

where 

Yl = (1 - ~bz)/(1 + -~�89 2 (80) 

Substituting the values of K]  ~ and K ~ ' o b t a i n e d  in Appendix B [Eqs. (B30) 
and (B31)], we get, after some algebra, 

n - - 1  

O~o 2 = ~ pk(akO) 2 + p n ( a n i )  2 (81) 
/r 

n - - i  

c%(a2 - %A 1~ = ~ puak~ + y o a ,  1 (82) 
/1: 

n - 1  

y l  2 + pn(a2 - a0Al~ 2 = y02 + ,o n ~ pkt% 2 (83) 
k 

where we have used the notation 

and 

A10 = crn2f~l~ (84) 

~:k = a n 2 ~ k / ( 2 D A n )  (85) 

The resolution of the system of equations (81)-(83) has to be done 
numerically and the proper physically acceptable solution has to be selected 
from all the possible ones. Perhaps a way of accomplishing this is to start 
at low concentrations using the results of the next section, and then solve 
for increasing concentrations using the solution of the previous value as an 
initial guess. 

3. THE EQUAL IONIC SIZE CASE 

I f  the ions are all of  the same diameter, but the solvent is still of dif- 
ferent size, then the solution of the preceding paragraph can be pushed 
further, and as a matter of fact, it can be brought to a form that clearly 
suggests the primitive model for the electrolytic mixture. We remark that 
the results of this section represent an extension of the previous results (8,m 
to the case of  different diameter hard dipoles, and also a rather more com- 
plete solution, since we are able to show that for low concentrations the 
result reduces to the Waisman-Lebowitz  solution for the primitive model, c3) 
Another bonus is that the number and electrovalence of the ions are arbitrary. 
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It can be appreciated that since all the ions are of equal size, then the 
quantities PM, P . ,  and P~ defined by (55), (69), and (77) are zero. Further- 
more, Aju, (76), does not depend on the index j any more, because all the 
ions are equally big, so that from (74) and (75) we see that Mj and v~ are 
simply proportional to the ionic charge z~., and we write 

M j  = z~M, N j  = z j N  (86) 

v j  = zjv (87) 

Replacing now into (52) and (64), we get 

aj ~ = zjao (88) 

ao = - ( 2 / D D n ) [ N -  �88 + �89 (89) 

and 

an 1 =- a~ = [2r/oA./(D.)]{�89 + �89 + Na) + �89 (90) 

where Yo is given by (66) and we recall that 

"qO = ~ PkZk 2 

For (62) and (63) we get the much simpler expressions 

Dn = (~o/D)[1 + N c r  - -~2p.cr,~cr&,~oV2] 2 (91) 

D = 1 + �88 (92) 

All of these results are in full agreement with our previous ones in 
Ref. 8. We turn now to Eqs. (81)-(83): From the above equation and (85) 
we can also write 

~o 2 = ~oao 2 + p~al 2 (93) 

%(a2 - ao Al~ = ~ ~oao K + yoa~V~p~ (94) 

yl  2 + pn(c~2 - %AZ~ 2 = yo 2 + p,~'0o ,~2 (95) 

with 

A 1~ = r162 + N~r) + �89 ; 

In matrix form the same set is 

(PnT]O) il2K YO J L~V/P-n ai 

0C02 
= ~ S - P .  ( ~  - ~ o A  ~~ 

K = vcr.z/(2Dk,O (96) 

(p.Vo)l/2K] 

Yo J 

 oAlO) ] 
p. (~2  - ~oAl~ ~ + y12J 

(97) 
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But the same relat ionship must  hold for  the determinants  of  these 
matrices,  which then leads to the conclusion that  

"~/~ aoyo - o , ( ~ o  al K = aoyl (98) 

We can fur ther  eliminate al  between (98) and  (94), so that  

ao%7o[Yo 2 + p~7o~C 2] - 2aoaoV'~o YoYl + ao2[Yl 2 - p~r/o K2] = 0 (99) 

and f rom this 

ao = ~o/(.'no) 1'~ (100) 

with the effective, ionic-concentra t ion-dependent  dielectric constant  

(e,)-1/2 = YlYo + (P,~o)I/2K(Yo 2 - - Y l  2 + p.~oK2) 1/2 
yo2 + p,~otr (101) 

Here  we choose the sign of  the discriminant  so as to have a decreasing 
dielectric constant  with increasing ionic concentrat ion.  We see also that  
Eq. (101) has the p roper  limiting behavior  for  To -+  0, since it becomes the 
Wer the im dielectric constant  ~4) 

e-1/2 = Y~/Yo = A~3/[(1 + lb2)(1 + -1�89 2] (102) 

An explicit solution for  the ionic interact ion pa rame te r  N can be found  
using (89) and (91) 

- 2 N a  + �89 + �89 
x = (1 + N c r  - -~l-a2A,~b~2) 2 (103) 

where we have in t roduced 

bl 2 = p,~cr,~3~o v2 (104) 

x = cr3C~o(no/e') ~/2 (105) 

which is a second degree equat ion for  Na, which is easily solved to yield 

N ~  = +~b~2(~/,~. + k / x )  + x - ~ { _  1 - x[1 + ~b~/(4~.)] 
+ [1 + 2x(1 + a2b~2/4~.)] ~/2) (106) 

The ion-d ipo le  interact ion pa ramete r  v can be obta ined by el iminating 
ao between (85) and (88) 

a ,  = [%/(yo 2 + p,~?o,c2)l[Yo(~2 - C~o A~o) - v/-VVo y1~r (107) 

or, using (90) and (96a), 

Dn + 2DANA1~ 

_ ao [ y o ( a 2  - ao A ~ ~  - V ' ~ o  y~K] (108) 
yo  2 + PnTlot< 2 
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where A 1~ is given by (96), Da by (91), and K by (96). This equation does 
not have a closed form solution and therefore has to be solved numerically. 

In the dilute solution regime, in which -% << 1 but ~/~0 is still finite, 
and we keep only the terms of the first order in ~/~o, a very substantial 
simplification occurs, and we get from (106), (96), and (108) the following 
set of equations: 

Ne = [ - 1  - x + (1 + 2x)li2]/x (109) 

x = ~3~o~/~ [Yl/Yo + v p . ~ / ~  c~2~.2/(2yo2A.)l (110) 

aoa2[1 + (1 + ATe) 2] 
= 2y0A.{k~. + �89 + N~) + k~.Aj} 011) 

and 

1/'V/-~w = Yz/Yo 

The equation for b2, the dipolar interaction term, remains unchanged 
from the pure dipole case, so that Wertheim's result remains unchanged in 
this case, that is, the parameter b2 is independent, in this regime of the 
ionic concentrationJ 4~ We remark also that (109) is formally identical with 
the MSA primitive model result, (a~ albeit with a density-dependent dielectric 
constant. 

4. T H E R M O D Y N A M I C  PROPERTIES 

One of the features of the MSA is that it yields fairly simple expressions 
for the excess thermodynamic properties of the mixtures when calculated 
via the internal energy/2~ For the primitive model of simple salts the calcu- 
lated properties are in good general agreement with computer simulations. 
It should be remembered also that the same quantities calculated from the 
pressure or compressibility relations are in rather poor agreement with each 
other and with the computer experiments, and this is a reflection of the 
inconsistency of the MSA. A similar inconsistency arises when we try to 
compute the energy directly from the quantities N~, v~, and bz [see Eqs. (53), 
(56), and (58)] 

- -  # 

AEo = e 2 ~ p~ziU~ + (2/~/3)e/~ p A ~ p~zivi -- ~p.(p.1)2b2/~.3 (112) 

Now the excess energy of the solution with respect to the solvent is 

AE = AEo -- 2(t~l)2b2(p~ = 0)/e. 3 (llZa) 

In fact, replacing the low-density limit for the case discussed in Section 3 
[Eqs. (109)-(110)], we do not get the properly screened, MSA primitive 
model result in the infinite-dilution limit 

A E  = (e2iew) ~_, p,ziX, (113) 
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A more natural way of calculating the excess energy is provided by the 
use of an effective dielectric constant, such as discussed by Adelman in a 
recent work(Zm; this effective dielectric constant is concentration dependent, 
and is given in our case by 

e (1/y12){(1 0 2 = - p,~K~,~) + O. ~_, P~[K%I 2} (113a) 

Whether this dielectric constant is equal to the one given by (101) is an 
open question that is left for a future investigation. 

The remaining thermodynamic properties are then computed from the 
energy relations: The free energy A is obtained from the integral 

fo' AA = aft' AE(fl') (114) 

and the excess osmotic coefficient Ar = fl AP/p, where AP is the excess 
osmotic pressure and p is the-concentration of the electrolyte 

Ar = p a(~ ~XA)/~p (115) 

Finally, the excess activity coefficient can be calculated from the 
thermodynamic relation 

k In y~ = kr + fl AA/p 

Rather simple formulas were recently derived by Hoye and Stell (2~ 
and Blum and Hoye (2~) for the excess properties of the primitive model 
and also for the pair correlation function. However, these points will be 
left for future investigations. 

A P P E N D I X  A. THE T R A N S F O R M S  OF THE C O R R E L A T I O N  
F U N C T I O N  

The inverse of the transformation (11) is given by (we drop the indices 
for clarity in the notation) 

X - g  0 dr iPz(r /r t ) f z (q)  

and is obtained, first, by the orthogonality of the 3-j symbols (13~ 

F , ( r ) = ( 2 l +  I ) ~  (m n ;)o~x(r) (A1) 
x= - t  X --X 

where 

L 
~ 

Fl(r) = 2rr dr1 P,(r/rl)fZ(rl) (A2) 
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and P~(x) is the Legendre polynomial. Consider now the Fourier transform 
of Fz(r), if(k). Using the integral representation of the spherical Bessel 
functions (~5~ 

we get 

j ,(kr) = (1/2i z) dt Pz(t)e 'k~t (A3) 
1 

jo ff~(k) = 2rr dr e~e'Fz(r) = 47ri ~ dr r2jz(kr)fz(r) (A4) 
03 

Now the inverse of this transform can be obtained from the orthogonality 
relation of the spherical Bessel functions: 

fo dk k2jz(kr)jz(kr ') = (~r/2rr') 3(r - r ') (A5) 

so that 

f~(r) = (i-~/2~r 2) dk k2jr (A6) 

Using (A4) in this relation, we see that 

f ( r )  = dr1 Fl(rl) dk k2j~(kr)[eikrl + (-) 'e- 'k~l] (A7) 

Using distribution theory, the second integration can be calculated explicitly: 

(_)~+lfo~ fo 1 ~2 
f ( r )  2~r drl F,(r~) dt P,(t) ~-~ [8(rt + rl) + (_) l  3(rt - r~)] 

CA8) 

where 3(x) is the Dirac delta function. Integration by parts and using (A1) 
and (A2) gives us the desired inverse transformation: 

x= -z X --X 

x dr1 ~ ( r l )  (1/r)[3'(r - rl) + 3'(r + rl)] 

- ( 1 / r 2 ) [ P / ( 1 )  3(r - r~) + ( - ) ' P ; ( 1 )  8(r + r~)l 

+ ( l [ r a ) P { ' ( ~ } [ O ( r - r ~ ) + ( - ) ' O ( r +  ra)]~ (19) 
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A P P E N D I X  B. THE A L G E B R A I C  S O L U T I O N  OF (43)  

Let us first rewrite (43) in matrix form 

, [ o  o o J(r) = Q(r) - A + 

f, fo + dr1 J(r - rl)oQ(r~) + drz JT(rl)pA (B1) 

where we recall that J(r)  is a matrix polynomial of the form (46) 

J ( r ) :  [30 ~ 101] +r[j01o 3s + r 2 [ ;  00] (B2) 

and we have used the electroneutrality condition (8'~~ 

n~l ~OOO 00 O0 1AO0 Pk drz J~k (rz)Ak~ = - ~ j  (B3) 
~c 

The algebraic problem is to substitute (51) into (B1) and solve the 
resulting equations for the coefficients a~" of (35). While this is a well-defined 
algebraic problem, it can be very messy if the proper strategy is not used. 
For simplicity in the notation, let us drop the superscripts m, n and write 
(51) in the form 

t 1 t ' ~ t t (  Q~j(r) = Q~j(r - e~j) + z~dAr - %)2 (B4) 

Define also the moments 

~ a$t 
Ki3 = dr rmQij(r) (B5) 

o A t  ~ 

It seems that the most convenient route is to use as independent 
variables Q~j(Aji) and K~ 

K~ 2 , a - = - ( ~ / 2 ) Q ~ j  + (~ , / 6 )Qj  (B6) 

Q,j(~j,) = - ~ Q ~ j  + (~,2/2)Q~ (B7) 

From (B4) and (B5) we also get 

Q~j(%/2) = - (1/cry) Q~j.()tj,) (B8) 

Q"y = (12/cha)[(cr,/2)Q~j(AjO + K ~ (B9) 
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(%-/2)K~ - Ki'j = (a,2/12) Qu(A,O (BIO) 

w ,  o] o 1 
= - -  6 r ~  [ 0  j l i  = 0 1 - -  l b  2 

(B12) 

(B13) 

where b 2 = p,~a,,3J zl, is a Jacobi matrix, the general inverse is simple to 
obtain: 

W - Z =  [ 8~k + (rr/6A)pk%a0 1/An0 ] (B14) 

with 
n - 1  

A. = 1 - -~b2 ; A = 1 - ~" ~ pka~ 3 (B15) 
k 

Now we can solve (B12) for I - pK~ 

[ I + P a a n / 6 A  ?A]  z 3[~x~/A],  o 
I - pK ~ = 0 1 [I - �89 + -1-2-pa [fi,o/A.J [a ,  a. ' ]  

n 

(B16) 

where 

Xm = ~ P.Z.a. m (B 17) 

filo = ~ p.zkj~o (B18) 

Since 

_!_ 3[ =~ joz 7 
- - 1 2 P 0  [ j l O  jz,~.]eA 

I - �89 - f I  - lr 'O 3 [ ~  0 
gv [0 JZl]) ( I-PK~ t. 

Using these relations, we find the first derivative of (B1) at r = ej/2: 

jzo j z l a .  j + l_ �89 z~ I zl + aJzza.zj PA | 

= - [ I - [ ;  ?z]paa/6](1/eOQ~,+ [501o J0z]P K~ (Bll) 

where Qa is the matrix with elements Q~j(AjO. Another relation is obtained 
from the second derivative of (B1) 
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Replacing (B16) into (B11), and solving for I - paQa/2, we find 

1 I- �89162 = {['0 00] + D [�89 [�89 1]}{1 + ~-~ P~ [0 J0~] z} 

1 2 I N  - -  ( 1/4D)p'a'~2s176 
+ zpa  [ a.fl~o/6 + ~ O / 2 D  ][a ~ a. ~] (B19) 

where we used the following notation 

[N]~ = N, 

1 

= 3~ + ~ p~%~ (B20) -~ X~ + P~Z,J ~176 

fi~o = ~.. p,z,j~o = A,~ ~ p,zzv, (B22) 
t l 

/c 

D = 1 + �88 2 Z P~(a~v~)2 (B24) 
/r 

%- = ~ v,[3u + (=/2A)p,cr,% s] (B25) 
l 

From (B19) we get the matrix elements of QA: For ionic interactions 
(m =0 ,  n = 0 )  wehave 

- Q ~ j ( a j ~ )  = _ A O ?  + , , ~ j  

Pnan2Ol~ ) Pnan2 (B26) + aj ~ N,~, + z~ 4D a~vt - ~ aiv,~j 

while for the ion-dipole interactions we get 

- Q~ = - A~ - a,~j/ D + a.~[N,~, + z , -  (p,~,~zf~~ 

(B27) 
1 0  - Q . j ( 2 q . )  = a.~ls/D + aj~ ~o + a.f~~ (B28) 

Replacing (BI9) into (B16) yields I - pK ~ The relevant matrix elements 
for our calculation are 

- p . K ~  = (1/A.2)(1 + �89 + a,,~p.~,~2f~l~ (B29) 

- p . K ~  ~ = (p,~r.2/ZDA,,)% + a ,~ lp ,~ .~ f~~ (B30) 
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To calculate the coefficients [a ~ a. ~] of (35), we take (B1) at the point 
r = hs~, combine with (Bl l )  and (B12), and multiply by the row vector 
[pz, 0]. We get 

Using the relations (B8)-(B10) and (B16) we arrive at 

(B31) 

[ xX~] [a o, a~]~ _ [0, -~/3~ - 1610,/3~ - �89 
fllOj 

(B32) 
where 

no = ~ P~Z~ 2 

Substituting (B19) into this relation yields 

�89 ~ a~ 1] 

(B33) 

= [-(=/2~X)x~,~, ~.~~ 
0 O" 

(B34) 
where 

Dn = ~ p~(N~(r~ + zk) 2 + �88176 - (s176 (B35) 
k 

which is in complete agreement with our previous result. ~3~ A swift calculation 
also yields 

O~j = (2~r/A)[cr, j + 0r/4A)cr,~rjC2] _ ~._...,ln .. o..jo _ p,~cr,~2~l,~s/2D (B36) 

and 

O~. = (2rr/A)[1 + 0r/2A)C2crj] + 0r/2A)aj~ ~ p~e~(Nk% + zk) 
k 

- -  (r ~ p~cr~2v~ (B37) 
k 

with ~2 = ~ p ~ 2 .  
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A P P E N D I X  C. EXPLICIT SOLUTION FOR MS A N D  v s 

The explicit forms of My and vj are obtained from (72) and (73): The 
resulting system of equations is 

�9 _ ~ s 2 ( ~ - / Z A ) P M ]  

zs 0r/2A)es2p v ] 

with 

(l+rOeSrl~, F~'~sDa(Pl"eJ/4D))(--~,MJ,,s) (C1) 

P~ = ~ ,  p,edv, (C3) 

and the remaining quantities are defined in (52) and thereafter. Solution 
of (C1) yields 

l( ,  
--v]ej = ~ --Fie j 

with 

-rle;D.tp.~n214Dq', ,-[ - es2(~/2A)PM~ 
1 + Foe s ] \Zs (rr/2A)es2P~ ] 

(C4) 

A s  u = 1 + Foe s - (Pzese,~)2pnDa/4D (C5) 

Now the unknown parameters PM and Pv can be found by substitution 
of My and ryes obtained from (C4) into the defining relations (C2) and (C3). 
The result is again a system of two coupled equations for PM and P~ 

(C6) 

We then would solve (C6) and replace the result into (C4). This gives explicit 
formulas for Mj and vs. Replacing these results into the equations of Section 
2 and Appendix B will give us explicit expressions for all the quantities as 
functions of Po, F1, and b2. The resulting expressions are rather lengthy 
and will not be given here. 

For not too concentrated solutions, however, the quantities Pu and 
Pv are expected to be small and therefore can be neglected 

PM ,,~ Pv '~ O 

so that 

Ms = zs/As ~ 

~s = _ P~zd As~ 

(C7) 

(c8) 

(c9) 
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from which the relevant parameters  (52), etc., are 

alo = P1D ~ (PkZk2/A~M)(�89 - ak/A~ M) 
k 

~ o  = _ r l ~ .  ~ pkZk2/Sk ~ 
k 

D = 1 + �88 2 ~ pkak2Zk2/(AkM) 2 
k 

(C10) 

(C11) 

(C12) 
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